
1

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 1/76Chapter 21: Introduction to C Programming Languages

Computer Fundamentals

Pradeep K. Sinha

Priti Sinha

Chapter 21

Introduction to C
Programming

Language

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 2/76Chapter 21: Introduction to C Programming Languages

Learning ObjectivesLearning Objectives

In this chapter you will learn about:

� Features of C

� Various constructs and their syntax

� Data types and operators in C

� Control and Loop Structures in C

� Functions in C

� Writing programs in C

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 3/76Chapter 21: Introduction to C Programming Languages

Basic Features and Rules

2

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 4/76Chapter 21: Introduction to C Programming Languages

Features of CFeatures of C

� Reliable, simple, and easy to use

� Has virtues of high-level programming language with
efficiency of assembly language

� Supports user-defined data types

� Supports modular and structured programming concepts

� Supports a rich library of functions

� Supports pointers with pointer operations

� Supports low-level memory and device access

� Small and concise language

� Standardized by several international standards body

Ref. Page 424

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 5/76Chapter 21: Introduction to C Programming Languages

C Character SetC Character Set

~ `! @ # % ^ & * () _

| \ { } [] : ; " ' , . ? /

−
+ = < >

Category Valid Characters Total

Uppercase alphabets A, B, C, …, Z 26

Lowercase alphabets a, b, c, …, z 26

Digits 0, 1, 2, …, 9 10

Special characters 31

93

Ref. Page 425

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 6/76Chapter 21: Introduction to C Programming Languages

ConstantsConstants

� Constant is a value that never changes

� Three primitive types of constants supported in C are:

� Integer

� Real

� Character

Ref. Page 425

3

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 7/76Chapter 21: Introduction to C Programming Languages

Rules for Constructing Integer
Constants
Rules for Constructing Integer
Constants

� Must have at least one digit

� + or – sign is optional

� No special characters (other than + and – sign) are
allowed

� Allowable range is:

� -32768 to 32767 for integer and short integer
constants (16 bits storage)

� -2147483648 to 2147483647 for long integer
constants (32 bits storage)

� Examples are: 8, +17, -6

Ref. Page 426

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 8/76Chapter 21: Introduction to C Programming Languages

Rules for Constructing Real
Constants in Fractional Form
Rules for Constructing Real
Constants in Fractional Form

� Must have at least one digit

� Must have one and only one decimal point

� + or – sign is optional

� No special characters (other than + and – sign) are
allowed

� Examples are: 5.3, +18.59, -0.46

Ref. Page 426

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 9/76Chapter 21: Introduction to C Programming Languages

Rules for Constructing Real Constants
in Exponential Form
Rules for Constructing Real Constants
in Exponential Form

� Has two parts – mantissa and exponent - separated by
‘e’ or ‘E’

� Mantissa part is constructed by the rules for constructing
real constants in fractional form

� Exponent part is constructed by the rules for
constructing integer constants

� Allowable range is -3.4e38 to 3.4e38

� Examples are: 8.6e5, +4.3E-8, -0.1e+4

Ref. Page 426

4

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 10/76Chapter 21: Introduction to C Programming Languages

Rules for Constructing Character
Constants
Rules for Constructing Character
Constants

� Single character from C character set

� Enclosed within single inverted comma (also
called single quote) punctuation mark

� Examples are: ’A’ ’a’ ’8’ ’%’

Ref. Page 426

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 11/76Chapter 21: Introduction to C Programming Languages

VariablesVariables

� A C variable is an entity whose value may vary during
program execution

� It has a name and type associated with it

� Variable name specifies programmer given name to
the memory area allocated to a variable

� Variable type specifies the type of values a variable
can contain

� Example: In i = i + 5, i is a variable

Ref. Page 427

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 12/76Chapter 21: Introduction to C Programming Languages

Rules for Constructing Variable NamesRules for Constructing Variable Names

� Can have 1 to 31 characters

� Only alphabets, digits, and underscore (as in last_name)
characters are allowed

� Names are case sensitive (nNum and nNUM are different)

� First character must be an alphabet

� Underscore is the only special character allowed

� Keywords cannot be used as variable names

� Examples are: I saving_2007 ArrSum

Ref. Page 427

5

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 13/76Chapter 21: Introduction to C Programming Languages

Data Types Used for Variable Type
Declaration
Data Types Used for Variable Type
Declaration

Data
Type

Minimum Storage
Allocated

Used for Variables that can contain

int 2 bytes (16 bits) integer constants in the range
-32768 to 32767

short 2 bytes (16 bits) integer constants in the range
-32768 to 32767

long 4 bytes (32 bits) integer constants in the range
-2147483648 to 2147483647

float 4 bytes (32 bits) real constants with minimum 6 decimal digits
precision

double 8 bytes (64 bits) real constants with minimum 10 decimal
digits precision

char 1 byte (8 bits) character constants

enum 2 bytes (16 bits) Values in the range -32768 to 32767

void No storage allocated No value assigned

Ref. Page 428

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 14/76Chapter 21: Introduction to C Programming Languages

int count;
short index;
long principle;
float area;
double radius;
char c;

Variable Type Declaration ExamplesVariable Type Declaration Examples

Ref. Page 427

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 15/76Chapter 21: Introduction to C Programming Languages

Standard Qualifiers in CStandard Qualifiers in C

Category Modifier Description

Lifetime auto
register
static
extern

Temporary variable
Attempt to store in processor register, fast access
Permanent, initialized
Permanent, initialized but declaration elsewhere

Modifiability const
volatile

Cannot be modified once created
May be modified by factors outside program

Sign signed
unsigned

+ or –
+ only

Size short
long

16 bits
32 bits

Ref. Page 428

6

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 16/76Chapter 21: Introduction to C Programming Languages

Lifetime and Visibility Scopes of
Variables
Lifetime and Visibility Scopes of
Variables

� Lifetime of all variables (except those declared as static) is
same as that of function or statement block it is declared in

� Lifetime of variables declared in global scope and static is
same as that of the program

� Variable is visible and accessible in the function or
statement block it is declared in

� Global variables are accessible from anywhere in program

� Variable name must be unique in its visibility scope

� Local variable has access precedence over global variable of
same name

Ref. Page 428

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 17/76Chapter 21: Introduction to C Programming Languages

KeywordsKeywords

� Keywords (or reserved words) are predefined words whose
meanings are known to C compiler

� C has 32 keywords

� Keywords cannot be used as variable names

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Ref. Page 429

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 18/76Chapter 21: Introduction to C Programming Languages

CommentsComments

� Comments are enclosed within /∗ and ∗ /

� Comments are ignored by the compiler

� Comment can also split over multiple lines

� Example: /∗ This is a comment statement ∗ /

Ref. Page 429

7

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 19/76Chapter 21: Introduction to C Programming Languages

Operators

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 20/76Chapter 21: Introduction to C Programming Languages

OperatorsOperators

� Operators in C are categorized into data access,
arithmetic, logical, bitwise, and miscellaneous

� Associativity defines the order of evaluation when
operators of same precedence appear in an expression

� a = b = c = 15, ‘=’ has R → L associativity

� First c = 15, then b = c, then a = b is evaluated

� Precedence defines the order in which calculations
involving two or more operators is performed

� x + y ∗ z , ‘∗’ is performed before ‘+’

Ref. Page 429

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 21/76Chapter 21: Introduction to C Programming Languages

Arithmetic OperatorsArithmetic Operators

2R → L ++x means pre-increment (increment the
value of x by 1 before using its value)

1L → R x++ means post-increment (increment
the value of x by 1 after using its value);

Increment;++

3L → RRemainder (or Modulus); x % y%

3L → RDivision; x / y/

3L → RMultiplication; x ∗ y∗

4L → RSubtraction; x - y-

4L → RAddition; x + y+

Arithmetic Operators

PrecedenceAssociativityMeaning with ExampleOperator

Ref. Page 430

8

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 22/76Chapter 21: Introduction to C Programming Languages

Operator Meaning with Example
Associativit

y
Precedence

Arithmetic Operators

-- Decrement;

x-- means post-decrement (decrement
the value of x by 1 after using its value);

L → R 1

--x means pre-decrement (decrement
the value of x by 1 before using its value)

R → L 2

= x = y means assign the value of y to x R → L 14

+= x += 5 means x = x + 5 R → L 14

-= x -= 5 means x = x - 5 R → L 14

∗ = x ∗= 5 means x = x ∗ 5 R → L 14

/= x /= 5 means x = x / 5 R → L 14

%= x %= 5 means x = x % 5 R → L 14

Arithmetic OperatorsArithmetic Operators

Ref. Page 431

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 23/76Chapter 21: Introduction to C Programming Languages

Logical Operators

! Reverse the logical value of a single variable;
!x means if the value of x is non-zero, make it
zero; and if it is zero, make it one

R → L 2

> Greater than; x > y L → R 6

< Less than; x < y L → R 6

>= Greater than or equal to; x >= y L → R 6

<= Less than or equal to; x <= y L → R 6

== Equal to; x == y L → R 7

!= Not equal to; x != y L → R 7

&& AND; x && y means both x and y should be
true (non-zero) for result to be true

L → R 11

|| OR; x || y means either x or y should be true
(non-zero) for result to be true

L → R 12

z?x:y If z is true (non-zero), then the value returned
is x, otherwise the value returned is y

R → L 13

Operator Meaning with Example Associativity Precedence

Logical OperatorsLogical Operators

Ref. Page 431

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 24/76Chapter 21: Introduction to C Programming Languages

Operator Meaning with Example Associativity Precedence

Bitwise Operators

~ Complement; ~x means

All 1s are changed to 0s and 0s to 1s

R → L 2

& AND; x & y means x AND y L → R 8

| OR; x | y means x OR y L → R 10

^ Exclusive OR; x ^ y means x y L → R 9

<< Left shift; x << 4 means shift all bits in x

four places to the left

L → R 5

>> Right shift; x >> 3 means shift all bits

in x three places to the right

L → R 5

&= x &= y means x = x & y R → L 14

|= x |= y means x = x | y R → L 14

^= x ^= y means x = x ^ y R → L 14

<<= x <<= 4 means shift all bits in x four places

to the left and assign the result to x

R → L 14

>>= x >>= 3 means shift all bits in x three

places to the right and assign the result to x

R → L 14

⊕

Bitwise OperatorsBitwise Operators

Ref. Page 431

9

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 25/76Chapter 21: Introduction to C Programming Languages

Data Access Operators

x[y] Access yth element of array x; y starts
from zero and increases monotically up

to one less than declared size of array

L → R 1

x.y Access the member variable y of
structure x

L → R 1

x –›y Access the member variable y of
structure x

L → R 1

&x Access the address of variable x R → L 2

*x Access the value stored in the storage
location (address) pointed to by pointer

variable x

R → L 2

PrecedenceAssociativityMeaning with ExampleOperator

Data Access OperatorsData Access Operators

Ref. Page 432

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 26/76Chapter 21: Introduction to C Programming Languages

Miscellaneous Operators

x(y) Evaluates function x with argument y L → R 1

sizeof (x) Evaluate the size of variable x in bytes R → L 2

sizeof (type) Evaluate the size of data type “type”
in bytes

R → L 2

(type) x Return the value of x after converting
it from declared data type of variable

x to the new data type “type”

R → L 2

x,y Sequential operator (x then y) L → R 15

Operator Meaning with Example
Associativit

y
Precedenc

e

Miscellaneous OperatorsMiscellaneous Operators

Ref. Page 432

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 27/76Chapter 21: Introduction to C Programming Languages

Statements

10

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 28/76Chapter 21: Introduction to C Programming Languages

Statements Statements

� C program is a combination of statements written
between { and } braces

� Each statement performs a set of operations

� Null statement, represented by “;” or empty {} braces,
does not perform any operation

� A simple statement is terminated by a semicolon “;”

� Compound statements, called statement block, perform
complex operations combining null, simple, and other
block statements

Ref. Page 432

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 29/76Chapter 21: Introduction to C Programming Languages

Examples of Statements Examples of Statements

� a = (x + y) ∗ 10; /∗ simple statement ∗/

� if (sell > cost) /∗ compound statement follows ∗/
{

profit = sell – cost;
printf (“profit is %d”, profit);

}
else /* null statement follows ∗/
{
}

Ref. Page 432

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 30/76Chapter 21: Introduction to C Programming Languages

I/O Operations

11

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 31/76Chapter 21: Introduction to C Programming Languages

Simple I/O OperationsSimple I/O Operations

� C has no keywords for I/O operations

� Provides standard library functions for performing all I/O
operations

Ref. Page 433

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 32/76Chapter 21: Introduction to C Programming Languages

Basic Library Functions for I/O
Operations
Basic Library Functions for I/O
Operations

I/O Library
Functions

Meanings

getch() Inputs a single character (most recently typed) from standard input (usually
console).

getche() Inputs a single character from console and echoes (displays) it.

getchar() Inputs a single character from console and echoes it, but requires Enter key to be
typed after the character.

putchar() or
putch()

Outputs a single character on console (screen).

scanf() Enables input of formatted data from console (keyboard). Formatted input data
means we can specify the data type expected as input. Format specifiers for
different data types are given in Figure 21.6.

printf() Enables obtaining an output in a form specified by programmer (formatted
output). Format specifiers are given in Figure 21.6. Newline character “\n” is
used in printf() to get the output split over separate lines.

gets() Enables input of a string from keyboard. Spaces are accepted as part of the input
string, and the input string is terminated when Enter key is hit. Note that although
scanf() enables input of a string of characters, it does not accept multi-word
strings (spaces in-between).

puts() Enables output of a multi-word string

Ref. Page 433

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 33/76Chapter 21: Introduction to C Programming Languages

Basic Format Specifiers for
scanf() and printf()
Basic Format Specifiers for
scanf() and printf()

Format
Specifiers

Data Types

%d integer (short signed)

%u integer (short unsigned)

%ld integer (long signed)

%lu integer (long unsigned)

%f real (float)

%lf real (double)

%c character

%s string

Ref. Page 434

12

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 34/76Chapter 21: Introduction to C Programming Languages

Formatted I/O ExampleFormatted I/O Example

/∗ A portion of C program to illustrate formatted input and output ∗/

int maths, science, english, total;
float percent;

clrscr(); /∗ A C library function to make the screen clear ∗/
printf (“Maths marks = ”); /∗ Displays “Maths marks = ” ∗/
scanf (“%d”, &maths); /∗ Accepts entered value and stores in variable “maths” ∗/
printf (“\n Science marks = ”); /∗ Displays “Science marks = ” on next line because of \n ∗/
scanf (“%d”, &science); /∗ Accepts entered value and stores in variable “science” ∗/
printf (“\n English marks = ”); /∗ Displays “English marks = ” on next line because of \n ∗/
scanf (“%d”, &english); /∗ Accepts entered value and stores in variable “english” ∗/

total = maths + science + english;
percent = total/3; /∗ Calculates percentage and stores in variable “percent” ∗/

printf (“\n Percentage marks obtained = %f”, percent);
/∗ Displays “Percentage marks obtained = 85.66” on next line

because of \n ∗/

(Continued on next slide)

Ref. Page 434

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 35/76Chapter 21: Introduction to C Programming Languages

Formatted I/O ExampleFormatted I/O Example

Output:
Maths marks = 92
Science marks = 87
English marks = 78
Percentage marks obtained = 85.66

Ref. Page 434

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 36/76Chapter 21: Introduction to C Programming Languages

Preprocessor Directives

13

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 37/76Chapter 21: Introduction to C Programming Languages

Preprocessor DirectivesPreprocessor Directives

� Preprocessor is a program that prepares a program for
the C compiler

� Examples of some common preprocessor directives in C
are:

Preprocessor

directive
Use

#include

Used to look for a file and place its

contents at the location where this

preprocessor directives is used

#define Used for macro expansion

#ifdef..#endif
Used for conditional compilation of

segments of a program

Ref. Page 435

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 38/76Chapter 21: Introduction to C Programming Languages

#include <stdio.h>
#define PI 3.1415
#define AND &&
#define ADMIT printf (“The candidate can be admitted”);

#ifdef WINDOWS
.
.
.

Code specific to windows operating system

.

.

.
#else

.

.

.
Code specific to Linux operating system

.

.

.
#endif

.

.

.

Code common to both operating systems

Examples of Preprocessor DirectivesExamples of Preprocessor Directives

Ref. Page 435

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 39/76Chapter 21: Introduction to C Programming Languages

Standard Preprocessor
Directives in C
Standard Preprocessor
Directives in C

Preprocessor Directive Meaning Category

Null directive

Simple
#error message Prints message when processed

#line linenum filename Used to update code line number and filename

#pragma name Compiler specific settings

#include filename Includes content of another file File

#define macro/string Define a macro or string substitution

Macro#undef macro Removes a macro definition

#if expr Includes following lines if expr is true

Conditional

elif expr Includes following lines if expr is true

#else Handles otherwise conditions of #if

#endif Closes #if or #elif block

#ifdef macro Includes following lines if macro is defined

#ifndef imacro Includes following lines if macro is not defined

String forming operator

Operators## Token pasting operator

defined same as #ifdef

Ref. Page 436

14

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 40/76Chapter 21: Introduction to C Programming Languages

Pointers, Arrays and
Strings

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 41/76Chapter 21: Introduction to C Programming Languages

PointersPointers

� C pointers allow programmers to directly access
memory addresses where variables are stored

� Pointer variable is declared by adding a ‘∗’ symbol
before the variable name while declaring it.

� If p is a pointer to a variable (e.g. int i, *p = i;)

� Using p means address of the storage location of
the pointed variable

� Using ∗p means value stored in the storage location
of the pointed variable

� Operator ‘&’ is used with a variable to mean variable’s
address, e.g. &i gives address of variable i

Ref. Page 437

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 42/76Chapter 21: Introduction to C Programming Languages

Illustrating Pointers ConceptIllustrating Pointers Concept

1000 i62

Location

address

Location

contents

Location

name

Address of i = 1000

Value of i = 62

int i = 62;

int ∗p;

int j;
p = &i; /∗ p becomes 1000 ∗/
j = ∗p; /∗ j becomes 62 ∗/
j = 0; /∗ j becomes zero ∗/
j = ∗(&i) /∗ j becomes 62 ∗/

Ref. Page 437

15

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 43/76Chapter 21: Introduction to C Programming Languages

ArrayArray

� An array is a collection of fixed number of elements in
which all elements are of the same data type

� It is a homogeneous, linear, and contiguous memory
structure

� Its elements can be referred to by using their subscript
or index position that is monotonic in nature

� First element is always denoted by subscript value of 0
(zero), increasing monotonically up to one less than
declared size of array

� Before using an array, its type and dimension must be
declared

� An array can also be declared as multi-dimensional such
as Matrix2D[10][10]

Ref. Page 438

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 44/76Chapter 21: Introduction to C Programming Languages

Illustrating Arrays ConceptIllustrating Arrays Concept

int marks[6];

Each element
being an int
occupies 2 bytes

marks[0] = 45
marks[1] = 84
.
.

.
marks[5] = 92

(a) An array of
integers having

6 elements

float price[4];

Each element
being a float
occupies 4 bytes

price[0] = 82.75
price[1] = 155.50
.
.

.
price[3] = 10.25

(b) An array of
real numbers

having 4 elements

char city[6];

Each element
being a char
occupies 1 byte

city[0] = ‘B’
city[1] = ‘O’
.
.

.
city[5] = ‘Y’

(c) An array of
characters

having 6 elements

1010

1008

1006

1004

1002

1000

10.25

250.00

155.50

82.75

1012

1008

1004

1000

1005

1004

1003

1002

1001

1000

92

63

82

66

84

45

Y

A

B

M

O

B

Ref. Page 438

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 45/76Chapter 21: Introduction to C Programming Languages

StringString

� A string is a one-dimensional array of characters
terminated by a null character (‘\0)’

� It is initialized at declaration as

char name[] = “PRADEEP”;

� Its individual elements can be accessed in the same way
as we access array elements such as name[3] = ‘D’

� Strings are used for text processing

� C provides a rich set of string handling library functions

Ref. Page 439

16

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 46/76Chapter 21: Introduction to C Programming Languages

Library Functions for String HandlingLibrary Functions for String Handling

Library Function Used To

strlen Obtain the length of a string

strlwr Convert all characters of a string to lowercase

strupr Convert all characters of a string to uppercase

strcat Concatenate (append) one string at the end of another

strncat Concatenate only first n characters of a string at the end of another

strcpy Copy a string into another

strncpy Copy only the first n characters of a string into another

strcmp Compare two strings

strncmp Compare only first n characters of two strings

stricmp Compare two strings without regard to case

strnicmp Compare only first n characters of two strings without regard to case

strdup Duplicate a string

strchr Find first occurrence of a given character in a string

strrchr Find last occurrence of a given character in a string

strstr Find first occurrence of a given string in another string

strset Set all characters of a string to a given character

strnset Set first n characters of a string to a given character

strrev Reverse a string

Ref. Page 440

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 47/76Chapter 21: Introduction to C Programming Languages

User Defined Data Types

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 48/76Chapter 21: Introduction to C Programming Languages

User Defined Data Types (UDTs)User Defined Data Types (UDTs)

� UDT is composite data type whose composition is not
included in language specification

� Programmer declares them in a program where they are
used

� Two types of UDTs are:

� Structure

� Union

Ref. Page 439

17

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 49/76Chapter 21: Introduction to C Programming Languages

StructureStructure

� It is a UDT containing a number of data types grouped
together

� Its constituents data types may or may not be of different
types

� It has continuous memory allocation and its minimum size
is the sum of sizes of its constituent data types

� All elements (member variable) of a structure are publicly
accessible

� Each member variable can be accessed using “.” (dot)
operator or pointer (EmpRecord.EmpID or EmpRecord →
EmpID)

� It can have a pointer member variable of its own type,
which is useful in crating linked list and similar data
structures

Ref. Page 439

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 50/76Chapter 21: Introduction to C Programming Languages

struct Employee
{

int EmpID;
char EmpName[20];

} EmpRecord;

struct Employee
{

int EmpID;
char EmpName[20];

};

Struct Employee EmpRecord;
Struct Employee ∗pempRecord = &EmpRecord;

Structure (Examples)Structure (Examples)

Ref. Page 440

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 51/76Chapter 21: Introduction to C Programming Languages

UnionUnion

� It is a UDT referring to same memory location using several
data types

� It is a mathematical union of all constituent data types

� Each data member begins at the same memory location

� Minimum size of a union variable is the size of its largest
constituent data types

� Each member variable can be accessed using “,” (dot)
operator

� Section of memory can be treated as a variable of one type
on one occasion, and of another type on another occasion

Ref. Page 441

18

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 52/76Chapter 21: Introduction to C Programming Languages

unionNum
{

int intNum;
unsigned

unsNum’
};
union Num Number;

Union ExampleUnion Example

Ref. Page 441

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 53/76Chapter 21: Introduction to C Programming Languages

Difference Between Structure and
Union
Difference Between Structure and
Union

� Both group a number of data types together

� Structure allocates different memory space contiguously
to different data types in the group

� Union allocates the same memory space to different
data types in the group

Ref. Page 441

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 54/76Chapter 21: Introduction to C Programming Languages

Control Structures

19

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 55/76Chapter 21: Introduction to C Programming Languages

Control StructuresControl Structures

� Control structures (branch statements) are decision
points that control the flow of program execution based
on:

� Some condition test (conditional branch)

� Without condition test (unconditional branch)

� They ensure execution of other statement/block or
cause skipping of some statement/block

Ref. Page 442

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 56/76Chapter 21: Introduction to C Programming Languages

Conditional Branch StatementsConditional Branch Statements

� if is used to implement simple one-way test. It can be in
one of the following forms:

� if..stmt

� if..stmt1..else..stmt2

� if..stmt1..else..if..stmtn

� switch facilitates multi-way condition test and is very
similar to the third if construct when primary test object
remains same across all condition tests

Ref. Page 442

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 57/76Chapter 21: Introduction to C Programming Languages

Examples of “if” ConstructExamples of “if” Construct

� if (i <= 0)
i++;

� if (i <= 0)
i++;

else
j++;

� if (i <= 0)
i++;

else if (i >= 0)
j++;

else
k++;

Ref. Page 442

20

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 58/76Chapter 21: Introduction to C Programming Languages

Same thing can be written also using if
construct as:

if (ch == ‘A’ || ch == ‘B’ || ch == ‘C’)
printf(“Capital”);

else if (ch == ‘a’ || ch == ‘b’ || ch == ‘c’)
printf(“Small”);

else
printf(“Not cap or small”);

Example of “switch” ConstructExample of “switch” Construct

switch(ch)
{

case ‘A’:
case ‘B’:
case ‘C’:

printf(“Capital”);
break;

case ‘a’:
case ‘b’:
case ‘c’:

printf(“Small”);
break;

default:
printf(“Not cap or small”);

}

Ref. Page 443

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 59/76Chapter 21: Introduction to C Programming Languages

Unconditional Branch StatementsUnconditional Branch Statements

� Break: Causes unconditional exit from for, while, do,
or switch constructs. Control is transferred to
the statement immediately outside the block
in which break appears.

� Continue: Causes unconditional transfer to next
iteration in a for, while, or do construct.
Control is transferred to the statement
beginning the block in which continue
appears.

� Goto label: Causes unconditional transfer to statement
marked with the label within the function.

(Continued on next slide)

Ref. Page 444

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 60/76Chapter 21: Introduction to C Programming Languages

� Return [value/variable]: Causes immediate termination of
function in which it appears and
transfers control to the statement
that called the function. Optionally,
it provides a value compatible to
the function’s return data type.

Unconditional Branch StatementsUnconditional Branch Statements

Ref. Page 444

21

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 61/76Chapter 21: Introduction to C Programming Languages

Loop Structures

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 62/76Chapter 21: Introduction to C Programming Languages

Loop StructuresLoop Structures

� Loop statements are used to repeat the execution of
statement or blocks

� Two types of loop structures are:

� Pretest: Condition is tested before each iteration to
check if loop should occur

� Posttest: Condition is tested after each iteration to
check if loop should continue (at least, a single
iteration occurs)

Ref. Page 444

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 63/76Chapter 21: Introduction to C Programming Languages

Pretest Loop StructuresPretest Loop Structures

� for: It has three parts:

� Initializer is executed at start of loop

� Loop condition is tested before iteration to
decide whether to continue or terminate the
loop

� Incrementor is executed at the end of each
iteration

� While: It has a loop condition only that is tested
before each iteration to decide whether to
continue or terminate the loop

Ref. Page 444

22

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 64/76Chapter 21: Introduction to C Programming Languages

Examples of “for” and “while”
Constructs
Examples of “for” and “while”
Constructs

� for (i=0; i < 10; i++)
printf(“i = %d”, i);

� while (i < 10)
{

printf(“i = %d”, i);
i++;

}

Ref. Page 444

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 65/76Chapter 21: Introduction to C Programming Languages

Posttest Loop Construct
“do…while”
Posttest Loop Construct
“do…while”

� It has a loop condition only that is tested after each
iteration to decide whether to continue with next
iteration or terminate the loop

� Example of do…while is:

do {
printf(“i = %d”, i);
i++;

} while (i < 10) ;

Ref. Page 445

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 66/76Chapter 21: Introduction to C Programming Languages

Functions

23

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 67/76Chapter 21: Introduction to C Programming Languages

FunctionsFunctions

� Functions (or subprograms) are building blocks of a
program

� All functions must be declared and defined before use

� Function declaration requires function name, argument
list, and return type

� Function definition requires coding the body or logic of
function

� Every C program must have a main function. It is the
entry point of the program

Ref. Page 445

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 68/76Chapter 21: Introduction to C Programming Languages

Example of a FunctionExample of a Function

int myfunc (int Val, int ModVal)
{

unsigned temp;
temp = Val % ModVal;
return temp;

}

This function can be called from any other place using
simple statement:

int n = myfunc(4, 2);

Ref. Page 446

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 69/76Chapter 21: Introduction to C Programming Languages

Sample C Program (Program-1)Sample C Program (Program-1)

/∗ Program to accept an integer from console and to display

whether the number is even or odd ∗/

include <stdio.h>

void main()

{

int number, remainder;
clrscr(); /∗ clears the console screen ∗/
printf (“Enter an integer: ”);

scanf (“%d”, &number);
remainder = number % 2;

if (remainder == 0)

printf (“\n The given number is even”);

else

printf (“\n The given number is odd”);

getch();

}

Ref. Page 446

24

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 70/76Chapter 21: Introduction to C Programming Languages

/∗ Program to accept an integer in the range 1 to 7 (both inclusive) from

console and to display the corresponding day (Monday for 1, Tuesday for
2, Wednesday for 3, and so on). If the entered number is out of range,
the program displays a message saying that ∗/

include <stdio.h>
include <conio.h>

#define MON printf (“\n Entered number is 1 hence day is MONDAY”);
#define TUE printf (“\n Entered number is 2 hence day is TUESDAY”);

#define WED printf (“\n Entered number is 3 hence day is WEDNESDAY”);
#define THU printf (“\n Entered number is 4 hence day is THURSDAY”);
#define FRI printf (“\n Entered number is 5 hence day is FRIDAY”);
#define SAT printf (“\n Entered number is 6 hence day is SATURDAY”);
#define SUN printf (“\n Entered number is 7 hence day is SUNDAY”);

#define OTH printf (“\n Entered number is out of range”);

void main()
{

int day;

clrscr();
printf (“Enter an integer in the range 1 to 7”);
scanf (“%d”, &day);

Sample C Program (Program-2)Sample C Program (Program-2)

(Continued on next slide)

Ref. Page 447

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 71/76Chapter 21: Introduction to C Programming Languages

switch(day)
{

Case 1:
MON;
break;

Case 2:
TUE;
break;

Case 3:
WED;
break;

Case 4:
THU;
break;

Case 5:
FRI;
break;

Case 6:
SAT;
break;

Case 7:
SUN;
break;

default:
OTH;

}
getch();

}

Sample C Program (Program-2)Sample C Program (Program-2)

Ref. Page 447

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 72/76Chapter 21: Introduction to C Programming Languages

/∗ Program to accept the radius of a circle from console and to calculate

and display its area and circumference ∗/

include <stdio.h>

include <conio.h>

define PI 3.1415

void main()

{

float radius, area, circum;
clrscr();

printf (“Enter the radius of the circle: ”);

scanf (“%f”, &radius);

area = PI ∗ radius ∗ radius;

circum = 2 ∗ PI ∗ radius;

printf (“\n Area and circumference of the circle are %f

and %f respectively”, area, circum);

getch();

}
(Continued on next slide)

Sample C Program (Program-3)Sample C Program (Program-3)

Ref. Page 448

25

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 73/76Chapter 21: Introduction to C Programming Languages

/∗ Program to accept a string from console and to display the number of
vowels in the string ∗/

include <stdio.h>
include <conio.h>

include <string.h>

void main()
{

char input_string[50]; /∗ maximum 50 characters ∗/
int len;
int i = 0, cnt = 0;

clrscr();
printf (“Enter a string of less than 50 characters: \n”);

gets (input_string);
len = strlen (input_string);

for (i = 0; i < len; i++)
{

switch (input_string[i])

(Continued on next slide)

Sample C Program (Program-4)Sample C Program (Program-4)

Ref. Page 448

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 74/76Chapter 21: Introduction to C Programming Languages

{

case ‘a’:

case ‘e’:

case ‘i’:

case ‘o’:

case ‘u’:

case ‘A’:

case ‘E’:

case ‘I’:

case ‘O’:
case ‘U’:

cnt++

}

}

printf (“\n Number of vowels in the string are: %d”, cnt);

getch();

}

Sample C Program (Program-4)Sample C Program (Program-4)

Ref. Page 448

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 75/76Chapter 21: Introduction to C Programming Languages

/∗ Program to illustrate use of a user defined function. The program initializes an array of n elements
from 0 to n-1 and then calculates and prints the sum of the array elements. In this example n = 10 ∗/

#include <stdio.h>
#define SIZE 10

int ArrSum(int *p, int n);
{

int s, tot = 0;
for(s = 0; s < n; s++)
{

tot += *p;
p++;

}
return tot;

}
int main()
{

int i = 0, sum = 0;
int nArr[SIZE] = {0};
while(i < SIZE)
{

nArr[i] = i;
i++

}
sum = ArrSum(nArr, SIZE);
printf("Sum of 0 to 9 = %d\n", sum);
return 0;

}

Sample C Program (Program-5)Sample C Program (Program-5)

Ref. Page 449

26

Computer Fundamentals : Pradeep K. Sinha & Priti SinhaComputer Fundamentals : Pradeep K. Sinha & Priti Sinha

Slide 76/76Chapter 21: Introduction to C Programming Languages

Key Words/PhrasesKey Words/Phrases

� Arithmetic operators
� Arrays

� Assignment operators

� Bit-level manipulation
� Bitwise operators

� Branch statement
� Character set

� Comment statement
� Compound statement

� Conditional branch

� Conditional compilation
� Constants

� Control structures
� Format specifiers

� Formatted I/O
� Function

� Keywords
� Library functions

� Logical operators

� Loop structures
� Macro expansion

� Main function
� Member element

� Null statement

� Operator associativity
� Operator precedence

� Pointer
� Posttest loop

� Preprocessor directives
� Pretest loop

� Primitive data types

� Reserved words
� Simple statement

� Statement block
� Strings

� Structure data type
� Unconditional branch

� Union data type
� User-defined data types

� Variable name

� Variable type declaration
� Variables

